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Abstract: In this work, we aim to determine 

the dimensions of an axisymmetric crack 

contained in a non-linear magnetic material. 

First, we begin to characterize the magnetic 

material from a modeling of the direct 

magnetodynamic problem by 2D finite 

element of the system (magnetic material + 

sensor) and solved by the Newton Rapheson 

method. FEMM(Finite Element Method 

Magnetics, an open source software, was used 

to validate the model).This direct model is 

then inverted by a simplex algorithm to 

determine the dimensions of the crack. 
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1. Introduction 

In industrial Non-Destructive Testing NDT 

applications, magnetic methods are 

commonly used to test heat exchangers, 

welds, pipelines, and other components to 

assure continued operation and avoid 

undesirable scenarios. Eddy Current Testing 

ECT is one of them.are considered to be 

cheaper and faster compared with traditional 

destructive tests (Shih, Wang, Wei, & Chen, 

2015) , (Rosado, Janeiro, Ramos, & Piedade, 

2013) 

Eddy current testing ECT (Khan & Nusair 

Khan, 2016) has already been proven to be 

effective in detecting cracks in conductive 

materials (MIX, 2005) (Raj, Jayakumar, & 

Thavasimuthu, 2007). To induce eddy 

currents inside a specimen, a coil driven by 

alternating current is used in traditional eddy 

current testing. A magnetic field sensor, such 

as a giant magnetoresistance (GMR) sensor 

(Pasadas, Ribeiro, Ramos, & Rocha, 2017) , 

Hall sensor (He, et al., 2010) (Tian, Sophian, 

Taylor, & Rudlin, 2005) , or sensing coil 

(Ribeirol & Ramos, 2008) is used to measure 

the magnetic field, which is the vector sum of 

the magnetic field produced by the current 

running in the excitation coil and the field 

produced by  eddy currents in the specimen A 

crack will cause the magnetic field to be 

perturbed by changing the route of the eddy 

currents. The magnetic field sensor can detect 

this disruption, indicating the presence of 

fissures (Vuillerrmoz, 1994). 

Simulation techniques can be utilized in this 

context to increase the comprehension of 

experimental signals, sensor design 

optimization, NDT performance evaluation, 

and/or fracture characterization in these 

materials (Abascal, Lambert, & Lesselier, 

2009) (Huang, Takagi, & Uchimoto, 2003). 

The work presented in this paper is a 

contribution to the characterisation of a non-

linear magnetic plate and its behaviour under 

an applied magnetic field. The aim of this 
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study is to develop a nonlinear model adapted 

to the resolution of low frequency problems, 

to better understand the interaction between 

the magnetic field and the nonlinear magnetic 

material and to characterise the axisymmetric 

cracks present in this type of material. 

the magnetic permeability of ferromagnetic 

materials is nonlinear and can be expressed by 

a curve called the first magnetization curve  In 

this paper, we will determine the dimensions 

of axisymmetric crack in a piece of AISI 416. 

This study differs from others in that we will 

express the magnetic permeability of this 

material using the full first magnetization 

curve, unlike the rest of the studies that 

express the magnetic permeability of this 

material is of a constant value, that is, it is 

considered the permeability of ferromagnetic 

materials  are linear 

In the course of this work, an open source 

software FEMM (Finite Element Method 

Magnetics) (Meeker) (Kada Kloucha, 2011) 

was used to validate the results obtained by 

the model developed by the finite element 

method in a Matlab environment. 

2. System modelling 

The AV nodal formulation is the most often 

used for the CND-CF problem because of its 

generality, robustness, and ease of 

implementation without any restrictions on 

the continuity requirements (Rachek & 

Féliachi, 2007). 
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As the A vector is merged with its 𝐴𝜑 

component, its divergence is therefore 

naturally zero (Coulomb gauge) 0divA 
ur
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(2) 

We replace the  expression  rA rA  with the 

expression *A  

Because permeability is dependent on 

magnetic induction in the nonlinear case, the 

magnetodynamic formulation becomes more 

complicated.: 
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(3) 

*A is the magnetic vector potential 

It's a partial differential equation that 

describes how an axisymmetric device 

behaves. 

For complicated electromagnetic systems, this 

formulation can not be solved analytically. As 

a result, we must utilize a numerical solution 

approach, and we have chosen the finite 

element method 

2.1.Nodal approximation by the finite 

element method 

The finite element method (Zienkiewicz, 

1971) is one of the most suitable methods for 

solving numeric of partial differential 

equations. It applies to most problems 

practices (linear or non-linear, stationary or 

time-dependent) defined in a any geometric 

domain in one, two or three dimensions 

(Feliachi, 1981) (Ren, 1999) (Renhart & 

Magele, 1990) (Sun, et al., 1992) 

The basic concepts of FEM are presented in 

this part, with an emphasis on the sequence of 

tasks that assure the computation process' 

coherence. The method's well-known idea is 

to discretize the research domain into several 

parts and then solve the equations associated 

with the chosen formulation locally in each of 

them.  
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A linear combination, weighted by 

interpolation polynomials, is then used to 

define the elementary unknowns. The degree 

of these polynomials and the fineness of the 

mesh affect the calculation's accuracy. Their 

coefficients are solely determined by the 

geometry and discretization of the geometry. 

Finally, following assembly, a matrix system 

of equations corresponding to the structure to 

be analyzed is created, which is 

straightforward to numerically process. As a 

result, the finite element method has four 

main steps. 

1. The domain is discretized into a finite 

number of elements (the mesh) 

(Touzot & Dhatt, 2005). 

2. Discretization of a typical element's 

partial differential equation (Matthew 

& Sadiku, 2001). 

3. Putting all of the pieces together in the 

field. 

4. Solving the algebraic system that 

results. 

We acquired the following system of 

nonlinear equations after applying the 

preceding procedures, and we used Newton 

Raphson's approach to solve the resulting 

system of equations (NAÏDJATE, 2012). 

* *
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* *
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Resolution by Newton-Raphson method 

We consider the following multidimensional 

nonlinear system of equations, from the 

nonlinear equation that depends on 

(𝑥1𝑥2. . . 𝑥𝑛) (Bargallo, 2006): 
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The Taylor expansion of the function ( )F x

leads to the following relationship: 
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Where J(x) is a Jacobi matrix given by 

(Bargallo, 2006) : 
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We will apply this method to the non-linear 

part of equation (4) (Bargallo, 2006): 

This equation can be written as follows: 
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(10) 

The first row of the Jacobi matrix can be 

written as follows (Chaalani, 2017): 
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(11) 

The same is done for the second and third 

equations to obtain the following general 

form:  

Then the magnetodynamic model can be 

written by the N-R method as follows 

(Chaalani, 2017) 
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Such as ʋ is the magnetic reluctivity of a 

nonlinear magnetic material depends on the 

magnetic field. 
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Now we can develop a model to solve the 

equation (12) using Matlab® program in 

order to calculate 𝐴 . It should be noted here 

that B in equation (12)   is calculated as 

follows: 
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3. Characterisation of an axisymmetric 

crack in a non-linear magnetic material 

3.1. direct model 

The magnetic permeability of a nonlinear 

magnetic material depends on the magnetic 

field and is given by equation (Brauer, 2013)  

(BRAUER, 1975): 

          
 

2
2

1 3 0/ 1/ k BB H k e k     
 

 (15) 

 μ is the magnetic permeability of the non-

linear magnetic material. 

 H
uur

is a magnetic field applied to the plate 

"excitation"  

 B
ur

The magnetic induction is the "plate 

response". 

k1, k2 and k3 are parameters related to the type 

of material. For each ferromagnetic material, 

the first magnetisation curve depends on the 

three parameters k1, k 2 and k. 3 

Our study about  AISI 416 steel which has 

the following coefficients (Brauer, 2013)  : 

1 11,92k     
2 2,749k                                        

  3 1036k   
Figure 1 shows the B=f(H) curve, which is 

the first magnetisation curve for AISI 416 

steel. 

 
Figure 1 B-H curve for AISI 416 stainless 

steel 

3.1.2.   Geometric characteristics 

Table 1 shows the system parameters. 

Table 1. System parameters 

Coil 

Outer radius 10.7mm 

Internal radius 6.88mm 

Number of turns 410 turns 

Height 5mm 

Lifte_off 0.19mm 

Specimen 

Electrical conductivity 0 .175 M [Ωm]-1 

Thickness 1cm 

Crack 

Rayon 3mm 

Depth 2mm 

Other 

Frequency 100 Hz 
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3 .1.3.  Discretization of the geometry 

In figure 2 the mesh obtained by the 

elaborated model is presented. In figure 3 the 

mesh obtained by FEMM is presented. 

 

Figure 2 Meshes obtained by the elaborated 

model 

 

Figure 3 FEMM meshes 

It's worth noting that the geometric 

discretization provided by Matlab differs from 

that provided by FEMM ,We note that FEMM 

offers much more control and manageability 

over the type, shape and accuracy of the 

mesh. Matrices are used to code and store the 

data generated by the meshing process. 

3.1.  4. Magnetic vector potential 

Figures  4 and 5 show respectively the iso 

values of the magnetic vector potential 𝐴  
calculated by the developed code and FEMM 

in an AISI 416 piece. Figure 6 shows the 

magnetic vector potential distribution. 

 

Figure 4 Magnetic vector potential 

contours by FEM 

 

Figure 5 Isovalues of the magnetic vector 

potential. 

3.1.5.   Magnetic vector potential 

 

Figure 6 Magnetic vector potential 

3.1.6.   Magnetic induction B 

In figure 7 the magnetic induction B is 

presented by our model. 

 

Figure 7 Magnetic induction B 

Figure 8shows the magnetic induction by 

FEMM. 

 

Figure 8 induction B-magnetic by FEMM 

We note that there is good agreement between 

the two results. 

3.1.7.   Induced currents 

Figure 9 shows the currents induced in the 

plate by our model with
2/MA m
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Figure 9 Induced currents 

The figure 10 shows the currents induced by 

FEMM, with  
2/MA m

 

 

Figure 10 FEMM induced currents in the 

plate 

3.1.8. Impedance calculation 

Because our simulation is based on the 

calculation of the coil's impedance variation 

(Helifa, 2012) , the impedance calculation 

was used. To begin, we'll need a model that 

allows us to compute the electromagnetic 

field both with and without the crack.  

 
2

0( ).          

s

s sI Z j A A J d

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r r r  

(16) 

Where 𝐴  and 𝐴 0 are the magnetic vector 

potentials with and without the crack 

respectively (Fukutomi, Takagi, Tani, 

Hashimoto, Shimone, & Harada, 1997)  

I and ω are respectively the intensity and the 

frequency of the current in the coil. 

We calculate the impedance of the system by 

the developed model and validated it  by 

FEMM.  

In table 2 a comparison between the 

impedance obtained by the developed model 

and that obtained by FEMM is presented. 

 

 

 

 

 

Table 2  Comparison between the results 

 The real part 

of Z 

The imaginary 

part of Z 

Z with the 

N-R method 

0.0016 2.26 

Z by FEMM 0.0017 2.30 

 

3.1.9.   Validation of the impedance 

diagram 

Figure 11 shows the normalized impedance 

diagram calculated by the developed code and 

its validation by FEMM respectively. These 

results are obtained at a frequency interval of 

[100:400:2000] Hz 

 

Figure 11 Validation of the impedance 

diagram 

The slight difference between the reactance 

values can be attributed to the mesh sizes 

used by the two codes. 

3.1.  10. influence of the depth and radius 

of the crack 

To test the sensitivity of the developed 

model to the variation of the dimensions 

« radius and depth » of both the 2D 

axisymmetric crack for an excitation 

frequency range of [100 : 200 : 2000] Hz, we 

plot the normalised impedance diagram for 

different values of radius and depth. 
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The figure12 shows the normalized 

impedance diagrams. 

 

Figure 12 Influence of the geometric of the 

crack impedance diagram. 

It can be seen that the impedance is 

influenced by the variation of both the depth 

and the radius of the crack, which shows that 

the model is sensitive to the variation of the 

crack dimensions. Thus, the direct model 

developed can be inverted. 

3.2.  Inverse problem 

The correctness of the direct model is very 

important in  inversion; an erroneous model 

might result in a poor result. 

The direct problem is solved in this paper by 

discretising the vector potential formulation 

using a 2D axisymmetric finite element 

model. 

 In order to minimize an objective function, 

the problem is solved by modifying the 

parameters sought in the simplex iterative 

process. As a result, we try to keep the 

difference (or error) between the 

impedance predicted by the direct model and 

the impedance measured to a minimum. It 

should be noted that iterative inversion is 

highly sensitive to the direct model's 

accuracy, an inaccurate model may result in 

an unsatisfying solution. 

The choice of the initialization of the 

estimated characteristics is also important. 

Indeed, these optimisation algorithms these 

optimisation algorithms look for minima, and 

it happens that the result is a local minimum 

and not a global one (Helifa, 2012)  (Bowler 

& Huang, 2005) (Doirat, 2007). 

Figure 13 illustrates this principle in the case 

of the non-destructive evaluation of one or 

several parameters 

 

 
Figure13 Iterative objective function 

minimization algorithm (Helifa, 2012) 

(Nelder & Meadf, 1965) 

 

The objective function : 
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(17) 

Where Rcal  (n) and Xcal (n) are the normalized 

resistances and reactances calculated with the 

direct model. 

Rmes(n) and Xmes(n) are the normalised 

resistances and reactances from the 

measurements. 

𝑁𝑓 is the number of frequencies considered. 

This function is minimised using the simplex 

algorithm (Nelder & Meadf, 1965). 

A direct model of the system must then be 

established to determine Rcal(n) and Xcal (n). 

The blue coloured impedance diagram in 

figure 12 is used as input vector is considered 

as experimental values  Z mes and the 

following values as reference values: 

 Crack depth = 2 mm 

 Crack radius = 3 mm 

Le diagramme d’impédance normalisée  

Dans cette partie, on va tester la sensibilité de notre modèle à la variation  à la fois des 

dimension de défaut de 2D qui se compose d’une profondeur et d’un rayon , et comme 

solution a le problème de l’unicité  on fait cette étude a multifréquence [100 :200 :2000] Hz, 

pour obtenir un diagramme d’impédance normalisée  , et le tracer 

 

 

 

Figure IV.8-Schéma général d’étude d’un problème inverse 

 

On peut remarquer que l’impédance est influencée par la variation de la profondeur et de la 

largeur de défaut  à la fois, alors notre  modèle est sensible  ce qui permet  d’inverser ce 

modèle.  
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Figures 14 show the normalised impedance 

diagram and the variation in crack dimensions 

for each iteration respectively. 

 

Figure 14 Impedance diagram for each 

iteration. 

In Figure 15 we show the inversion results 

obtained in this example. It shows the 

dimension values and the residual value in 

each iteration until convergence. 

 

 

 

 

Figure 15 Evolution ofthe different quantities 

during iterations, (a) Crack Depth , (b) Crack 

Radius , (c) Residual value in each iteration 

We note that there is, in general, good 

agreement between the results obtained by 

inversion and the reference values. 

   Table 3 Comparison of the obtained and 

reference values 

 Values 

obtained by 

inversion 

Reference 

values 

crack depth 2.7mm 2mm 

crack width 2.8mm 3mm 

4. Conclusion 

This paper, devoted to the characterisation of 

an axisymmetric crack in a non-linear 

magnetic material, was carried out by 

inverting a developed 2D axisymmetric model 

with a simplex algorithm to determine the 

dimensions of a non-through crack ,It should 

be noted here that in the case of axial 

symmetry, the results of the study in 2D are 

completely equivalent to the study of 3D, and 

we resort to 2D to reduce and simplify the 

calculation period . The normalised 

impedance diagram allowed us to overcome 

the uniqueness problem often encountered in 

solving the inverse problem. 
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5. Future scope 

In the future, we aspire to expand this study 

by exploiting the two-dimensional program 

that we developed to characterise some 

properties of ferromagnetic materials such as 

the magnetic permeability and Electrical 

conductivity …ect .It would also be good to 

work on determining the dimensions of the no 

axisymmetric crack that requires a three-

dimensional study, that is, we will work on 

developing 3D finite element program  in a 

Matlab® environment. 

6. References 

Abascal, J. F., Lambert, M., & Lesselier, D. 

(2009). Nonlinearized mapping of volumetric 

defects affecting a metal tube. Dans 

Electromagnetic Nondestructive Evaluation 

(Vol. 32, pp. pp. 172-179). IOS Press. 

Bargallo, R. (2006). Finite elements for 

electrical engineering. Universitat Politecnica 

De Catalunya. 

Bowler, N., & Huang, Y. (2005). Electrical 

conductivity measurements of metal plates 

using broadband eddy current and four point 

methods. MEASUREMENT SCIENCE AND 

TECHNOLOGY , 16. 

Brauer, J. R. (2013). Magnetic actuators.  

BRAUER, J. R. (1975). Simple Equations for 

the Magnetization. IEEE Transactions on 

Magnetics , 81. 

Chaalani, A. (2017). Determination of the 

dimensions of a defect by the nodal finite 

element method. these magister, Ecole 

nationale superieure de laghoute . 

Doirat, V. (2007). Contribution à la 

modélisation de systèmes de Contrôles Non 

Destructifs par Courants de Foucault. 

Application à la caractérisation physique et 

dimensionnelle de matériaux de 

l'aéronautique. Doctoral dissertation, 

Université de Nantes. 

Feliachi, M. (1981). Contribution au calcul du 

champ électromagnétique par la méthode des. 

In These de doctorat . 

Fukutomi, H., Takagi, T., Tani, J., 

Hashimoto, M., Shimone, J., & Harada, Y. 

(1997). Numerical Evaluation of ECT 

Impedance Signal due to Minute Cracks. 

IEEE Transactions On Magnetics.  

He, Y., Luo, F., Pan, M., Weng, F., Hu, X., 

Gao, J., et al. (2010). Pulsed eddy current 

technique for defect detection in aircraft 

riveted structures. NDT&E International , 

43(2010)176–181. 

Helifa, B. (2012). Contrubuation a la 

simulation du CND par courants de foucault 

en vue de la caractérisation des 

fisuredebouchan. PhD thesis from the 

University of Nantes. 

Huang, H., Takagi, T., & Uchimoto, T. 

(2003). Fast numerical calculation for crack 

modeling in eddy current testing of 

ferromagnetic. Journal of Applied Physics , 

94 (9). 

Kada Kloucha, O. (2011). Etude, réalisation 

et commande d’un moteur a reluctance. 

mimoire magister, université d’ Oran. 

Khan, S. H., & Nusair Khan, A. (2016). 

Metallurgical Characterization of Bainitic 

Steel by Eddy Current. TECHNICAL 

ARTICLE_PEER-REVIEWED . 

Matthew, N., & Sadiku, O. (2001). Numerical 

Techniques in Electromagnetics 2ed. CRC 

Press (ISBN:0-8493-1395-3). 

Meeker, D. (s.d.). 

http://www.femm.info/wiki/HomePage. 

MIX, P. E. (2005). Introduction to 

nondestructive testing a training guide. (J. W. 

Sons, Éd.) wiley interscience. 

NAÏDJATE, M. (2012). Développement d'un 

Code de Calcul pour l'Etude du Rayonnement 



INTERNATIONAL JOURNAL OF ADVANCED STUDIES 
IN COMPUTER SCIENCE AND ENGINEERING          
IJASCSE VOLUME 11 ISSUE 3 2022 

03/31/2022 

  
 

WWW.IJASCSE.ORG 10 

 

Electromagnétique des Panneaux Solaires en 

Champ Proche. Magister thesis , Amar Telidji 

University Laghouat. 

Nelder, J. A., & Meadf, R. (1965). A simplex 

method for function minimization. The 

computer journal, , 7 (4). 

Pasadas, D. J., Ribeiro, A. L., Ramos, H. G., 

& Rocha, T. J. (2017). Inspection of cracks in 

aluminum multilayer structures using planar 

ECT probe and inversion problem. IEEE 

TRANSACTIONS ON INSTRUMENTATION 

AND MEASUREMENT , VOL. 66, NO. 5. 

Rachek, M., & Féliachi, M. (2007). 3-D 

movement simulation techniques using FE 

methods:. NDT&E International . 

Raj, B., Jayakumar, T., & Thavasimuthu, M. 

(2007). Practical eddy current testing. Narosa 

Publishing House. 

Ren, Z. (1999). Solving 3-D eddy current 

problem containing thin cracks using dual. 

IEE Proceedings-Science, Measurement and 

Technology . 

Renhart, W., & Magele, C. A. (1990). The 

treatment of cracks in NDT problems using 

FEM. IEEE Transactions on Magnetics , 

26(2), 873–876.  

Ribeirol, A. L., & Ramos, H. G. (2008). 

Inductive probe for flaw detection in non-

magnetic metallic plates using eddy currents. 

IEEE Instrumentation and Measurement 

Technology Conference . (pp. pp. 1447-1451). 

IEEE. 

Rosado, L., Janeiro, F., Ramos, P., & Piedade, 

M. (2013). Defect characterization with eddy 

current testing using nonlinear regression 

feature extraction. IEEE Trans Instrum Meas . 

Shih, Y., Wang, Y., Wei, S., & Chen, C. 

(2015). Improving non-destructive test results 

using artificial neural networks. Int J Mach 

Learn Comput . 

Sun, Y. S., Lin, H. Y., Chen, M. J., De Wang, 

C., Wu, X. B., Atherton, D., et al. (1992). 

Finite element modelling and physics of 

remote field eddy current responses for. IEEE 

Transactions on Magnetics , 28(4), 1941–

1947. 

Tian, G. Y., Sophian, A., Taylor, D., & 

Rudlin, J. (2005). Multiple sensors on pulsed 

eddy-current detection for 3-D subsurface 

crack assessment. VOL. 5 ( 1). 

Touzot, G., & Dhatt, G. (2005). Méthodies 

Éléments Finis. Hermes science . 

Vuillerrmoz, P. (1994). Les courants de 

Foucault. Principes, mesure et contrôle, . 

Zienkiewicz, O. (1971). The Finite Element 

Method in Engineering Science. New York : 

McGraw-Hill. 

 

 


